## A novel automated segmentation tool detects differential brainstem involvement in atypical parkinsonian syndromes

Martina Bocchetta<sup>1</sup>, Juan Eugenio Iglesias<sup>2</sup>, Viorica Chelban<sup>3,4</sup>, Edwin Jabbari<sup>3</sup>, Ruth Lamb<sup>3</sup>, Lucy L. Russell<sup>1</sup>, Caroline V. Greaves<sup>1</sup>, Mollie Neason<sup>1</sup>, David M. Cash<sup>1,2</sup>, David L. Thomas<sup>5,6</sup>, Jason D. Warren<sup>1</sup>, PROSPECT consortium, John Woodside<sup>3</sup>, Henry Houlden<sup>4</sup>, Huw R. Morris<sup>3</sup>, Jonathan D.

<sup>1</sup>Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK

<sup>2</sup>Centre for Medical Image Computing, University College London, London, UK

<sup>3</sup>Department of Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK

<sup>4</sup>Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK

<sup>5</sup>Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK

<sup>6</sup>Leonard Wolfson Experimental Neurology Centre, UCL Queen Square Institute of Neurology, University College London, London, UK

## Background

Brainstem segmentation has been useful in identifying potential imaging biomarkers for both diagnosis and progression in atypical parkinsonian disorders. However, the majority of work has been performed using manual segmentation which is time-consuming for large cohorts.

## Methods

We investigated brainstem involvement in atypical parkinsonism using a novel automated segmentation tool, adapted from one used previously in Freesurfer [Iglesias et al., 2015], within GIF [Cardoso et al., 2015], an atlas fusion and label propagation approach. We measured the volume of the medulla, pons, superior cerebellar peduncle (SCP) and midbrain from 3T T1-weighted MRIs in 109 participants in the UCL PROSPECT and LIFTD studies: 67 patients with mean (standard deviation) age at scan of 67 (10) years and 42 age-matched controls [65 (7) years] (Figure 1). Diagnoses in the patient group were corticobasal syndrome (CBS, n=14), multiple system atrophy (MSA, n=16), progressive supranuclear palsy with a Richardson's syndrome (PSP-RS, n=12), variant PSP [n=18: 7 PSP-CBS, 3 PSP-P, 3 PSP-F, 3 PSP-SL, 2 PSP-PGF] [Höglinger et al., 2017], and 7 patients with an atypical parkinsonian syndrome (APS) not meeting criteria for a specific disorder. We performed an ANCOVA adjusted for age, gender, total intracranial volume, and scanner type.

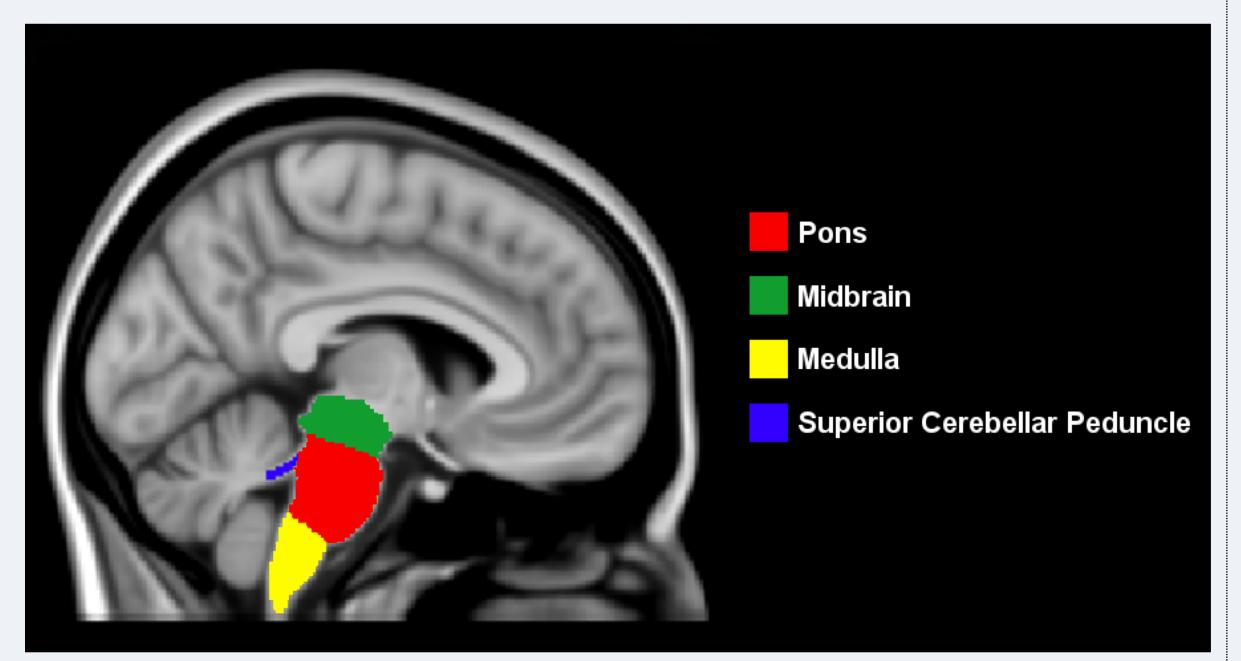



Figure 1. Example of brainstem segmentation mapped on the T1-weighted ICBM152 template.



All brainstem regions were smaller in MSA (17-34% volume difference, p<0.0005) and in both PSP groups (18-33%, p<0.0005) than controls. The most affected region in MSA was the pons (34%), while the most affected regions in both PSP-RS and variant PSP were the SCP (33% and 23% respectively) and midbrain (26% and 24%). The brainstem was less affected in CBS but nonetheless the pons (14%, p<0.0005), midbrain (14%, p<0.0005) and medulla (10%, p=0.001) were significantly smaller than controls. The APS group did not show any significant differences (Figure 2).

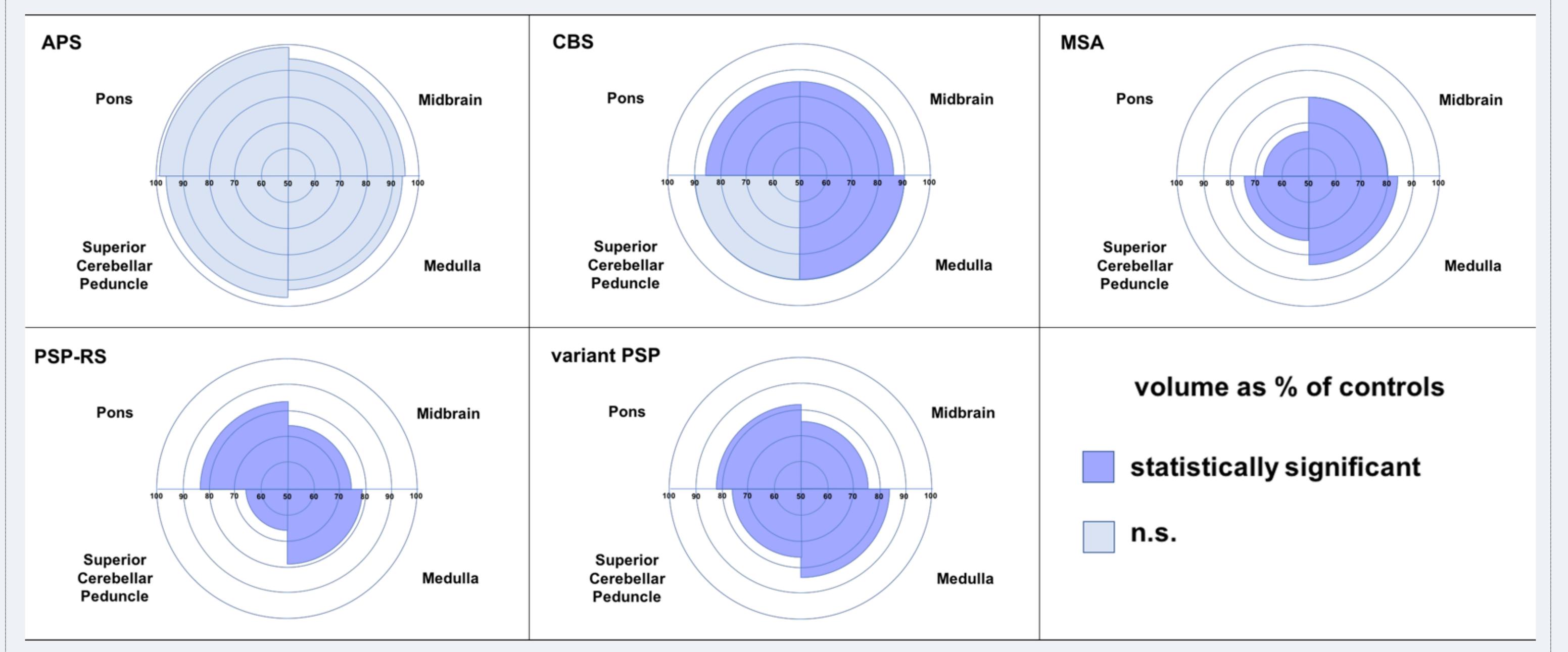



Figure 2. Percentage of volume in patients as percentage of volumes in controls.



Automated methods are able to accurately quantify the differential involvement of brainstem structures in atypical parkinsonism. This will be important in future trials with large patient numbers where manual segmentation is unfeasible.

Acknowledgements: The Dementia Research Centre is supported by Alzheimer's Research UK, Brain Research Trust, the Wolfson Acknowledgements: The Dementia Research Centre is supported by Alzheimer's Society PROSPECT study is supported by the PSP Association and the MSA Trust. JDR is an MRC Clinician **Centre PROSPECT study** is supported by the PSP Association and the MSA Trust. JDR is an MRC Clinician **Centre PROSPECT study** is supported by the PSP Association and the MSA Trust. JDR is an MRC Clinician Scientist and has received funding from the NIHR Rare Diseases Translational Research Collaboration.

