Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia

Ione OC Woollaccott, Jonathan D Rohrer, Katrina M Dick, Emilie Brotherhood, Elizabeth Gordon, Alexander Fellows, Jamie Toombs, Ron Duyref, M Jorge Cardoso, Sebastian Ourslins, Jennifer M Nicholas, Niklas Norgren, Simon Mead, Ulf Andreasson, Kai Blennow, Jonathan M Schott, Nick C Fox, Jason D Warren, Henrik Zetterberg

Introduction

- Clinical trials in dementia would benefit from effective blood-based measures of disease state or progression. However, we currently lack reliable blood-based biomarkers in frontotemporal dementia (FTD).
- Neurofilament is a protein that maintains the structural integrity of axons and has 3 subunits: heavy chain, medium chain and light chain (NFL). Cerebrospinal fluid (CSF) NFL concentrations increase with axonal damage in multiple sclerosis and may correlate with disease severity and progression in motor neuron disease. CSF NFL concentrations correlate with disease severity in FTD, but blood-based (serum) markers would be more useful as they are less invasive to obtain.
- We developed a novel ultrasensitive assay that detects NFL concentrations at very low levels in serum. We compared serum NFL concentrations between a group of patients with FTD (including a variety of clinical and genetic subgroups) and healthy controls and analysed the relationship between serum NFL concentrations and a variety of neuropsychometric and neuropathological measures of disease.

Methods

- We collected serum samples from 67 patients with FTD, consecutively recruited from the University College London FTD study. Patients had logopenic variant primary progressive aphasia (PPA, n=4); fronto-temporal dementia (FTD, n=11; all bvFTD) or progranulin, MAPT (n=1); bvFTD, 1 nvPPA, 2 PPA-NOS. No mutations were found in the other participants.

<table>
<thead>
<tr>
<th>Disease group</th>
<th>Controls</th>
<th>Total FTD</th>
<th>FTD-MND</th>
<th>nvPPA</th>
<th>svPPA</th>
<th>PPA-NOS</th>
<th>bvPPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>28</td>
<td>67</td>
<td>34</td>
<td>13</td>
<td>13</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Age, years</td>
<td>63.9 (7.2)</td>
<td>64.5 (7.9)</td>
<td>63.0 (8.3)</td>
<td>65.0 (8.3)</td>
<td>67.5 (7.7)</td>
<td>66.2 (6.4)</td>
<td>63.9 (5.2)</td>
</tr>
<tr>
<td>Maxe gender (%)</td>
<td>46.4</td>
<td>61.2</td>
<td>73.5</td>
<td>66.7</td>
<td>23.1</td>
<td>60.0</td>
<td>71.4</td>
</tr>
<tr>
<td>Disease duration, years (mean SD)</td>
<td>N/A</td>
<td>5.5 (3.7)</td>
<td>6.2 (4.6)</td>
<td>6.0 (4.6)</td>
<td>3.8 (1.5)</td>
<td>6.0 (2.1)</td>
<td>4.5 (2.5)</td>
</tr>
<tr>
<td>Serum NFL pg/ml (mean SD)</td>
<td>19.8 (8.2)</td>
<td>77.9 (51.3)</td>
<td>57.8 (33.1)</td>
<td>195.0 (69.9)</td>
<td>82.3 (35.6)</td>
<td>85.6 (31.3)</td>
<td>91.2 (68.6)</td>
</tr>
</tbody>
</table>

Table 1. Demographic characteristics of the study participants. Total FTD cases do not include nPPA, bvFTD = behavioural variant FTD, FTD-MND = FTD with motor neuron disease, PPA = primary progressive aphasia, nPPA = nonvariant PPA, svPPA = semantic variant PPA, PPA-NOS = PPA with otherwise unspecified NOS. NFL = neurofilament light chain; SD = standard deviation.
- Serum NFL concentrations were determined using the NF-Light kit, transferred onto the single molecule Siroma platform, using a homebrew kit (Quanterix Corp, Boston, MA, USA). Protocol details can be found in the Sioma Homebrew Assay Development Guide (Quanterix). The lower limit of serum NFL concentration quantification was 0.26 pg/ml.
- A proportion of FTD patients had baseline (n=46/67) and follow up (n=29/46) volumetric T1 brain magnetic resonance imaging on a 3T Siemens Trio scanner and baseline (n=47/67) and follow up (n=29/48) neuropsychological tests: Weschler Abbreviated Scale of Intelligence (WASI) Vocabulary, Block Design, Similarities and Matrices subtests, the Recognition Memory Tests for Faces and Words, the Graded Naming Test, the Graded Difficulty Calculation Test, the D-KEFS Color-Word Interference Test and the Mini-Mental State Examination. Mean (standard deviation, SD) interval between serum sampling and baseline assessments was 0.0 (2.0) years. Mean (SD) interval between baseline and follow up assessments was 1.1 (0.2) years.
- Whole brain volumes were measured using a semi-automated segmentation method, with annualized whole brain atrophy rates calculated using the boundary shift integral. Individual lobar cortical volumes were measured using a multi-atlas segmentation propagation approach following the brainCOLOR protocol, combining regions of interest to calculate grey matter volumes for each lobe. Annualized lobar atrophy rates were calculated using the differences in volumes between baseline and follow up scans, and dividing by the interval between scans.

Results

- Mean serum NFL concentrations were higher in patients with FTD than controls (Table 1; p<0.001). Concentrations were significantly higher in bvFTD cases than controls (p<0.001) and in both nPPA (p<0.001) and svPPA (p=0.001) cases compared with controls (Figure 1). There was a trend for a higher concentration in svPPA compared with bvFTD cases (mean difference = 38.1 pg/ml; p=0.070). Concentrations were higher in svPPA than nPPA cases (mean difference = -46.3 pg/ml; p=0.032).

Clinical groups

- Serum NFL concentrations were higher than controls in each of the genetic subgroups (Figure 2). Mean (SD) levels: 138.5 (103.3) pg/ml in GRN cases, 79.2 (48.2) pg/ml in C9orf72 cases and 40.5 (20.9) pg/ml in MAPT cases. However, only the MAPT subgroup (mean difference from controls = 20.8; 95% CI = 1.4, 40.3; p=0.035) and the C9orf72 subgroup (mean difference from controls = 59.5, 95% CI = 8.0, 111.0; p=0.025) were significantly different from controls. There was no significant difference between genetic groups.

Genetic groups

- Serum NFL concentrations were correlated with rates of whole brain (r = 0.46, p=0.01), frontal lobe (r = 0.53, p=0.003) and parietal lobe (r = 0.38, p=0.04) atrophy, although not with other lobar atrophy rates. However, only the frontal lobe rate of atrophy survived correction for multiple comparisons (Figure 3). There were no significant correlations with baseline brain volumes. Serum NFL concentrations were correlated with baseline measures of executive dysfunction (WASI) similarities (r = -0.32, p=0.03) and D-KEFS Color-Word Interference task colour naming task (r = -0.35, p=0.03) but not with other baseline neuropsychological tests, nor with longitudinal changes in psychometric measures. No neuropsychological measures survived correction for multiple comparisons.

Disease correlations

- Using a novel ultrasensitive immunoassay, we show that serum NFL concentrations are raised in FTD and that higher concentrations are associated with a faster rate of frontal lobe atrophy. Within the FTD subtypes, there was a tendency for patients with probable TDP-43 pathology (svPPA and FTD-MND clinically. GRN and C9orf72 mutations genetically) to have higher levels compared with patients with tau pathology (MAPT mutations), who tend to have a slower disease course.
- This study suggests that serum NFL concentrations may reflect the intensity of disease in FTD and could be used as a predictor of disease progression.
- As blood sampling is less invasive than lumbar puncture, serum NFL concentration may prove to be a useful outcome measure in future clinical trials in FTD.