Check for updates

A modified Camel and Cactus Test detects presymptomatic semantic impairment in genetic frontotemporal dementia within the GENFI cohort

Katrina Moore^a (b), Rhian Convery^a (b), Martina Bocchetta^a (b), Mollie Neason^a (b), David M. Cash^a, Caroline Greaves^a (b), Lucy L. Russell^a (b), Mica T. M. Clarke^a (b), Georgia Peakman^a (b), John van Swieten^b, Lize Jiskoot^b, Fermin Moreno^c, Myriam Barandiaran^c, Raquel Sanchez-Valle^d, Barbara Borroni^e, Robert Laforce Jr^f, Marie-Claire Doré^f, Mario Masellis^g, Maria Carmela Tartaglia^h, Caroline Graffⁱ, Daniela Galimberti^{j,k} (b), James B. Rowe^l, Elizabeth Finger^m, Matthis Synofzik^{n,o}, Hans-Otto Karnath^p, Rik Vandenberghe^q, Alexandre de Mendonça^r, Carolina Maruta^s, Fabrizio Tagliavini^t, Isabel Santana^u, Simon Ducharme^v, Chris Butler^w, Alex Gerhard^x, Johannes Levin^y, Adrian Danek^y, Markus Otto^z, Jason D Warren^a, and Jonathan D. Rohrer^a (b), and on behalf of the Genetic FTD Initiative, GENFI.

^aDepartment of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK; ^bDepartment of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands; ^cCognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Spain; ^dAlzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain; eCentre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; ^fClinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, Université Laval, Québec, Canada; ⁹Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada; ^hTanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada; ⁱDepartment of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden; ^jCentro Dino Ferrari, University of Milan, Milan, Italy; ^kNeurodegenerative Diseases Unit, Ospedale Policlinico, Fondazione IRCCS Ca' Granda, Milan, IT; ^IDepartment of Clinical Neurosciences, University of Cambridge, Cambridge, UK; "Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada: "Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany; ^oGerman Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; ^pDivision of Neuropsychology, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany; ^qLaboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; ^rFaculty of Medicine, University of Lisbon, Lisbon, Portugal; ^sFaculty of Medicine, Laboratory of Language Research, Centro de Estudos Egas Moniz, University of Lisbon, Lisbon, Portugal; ^tFondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologica Carlo Besta, Milano, Italy; ^uFaculty of Medicine, University of Coimbra, Coimbra, Portugal; ^vDepartment of Psychiatry, McGill University Health Centre, McGill University, Montreal, Canada; ^wDepartment of Clinical Neurology, University of Oxford, Oxford, UK; [×]Faculty of Medical and Human Sciences, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK; ^yDepartment of Neurology, Ludwig-Maximilians-University, Munich, Germany; ^zDepartment of Neurology, University of Ulm, Ulm, Germany

ABSTRACT

Impaired semantic knowledge is a characteristic feature of some forms of frontotemporal dementia (FTD), particularly the sporadic disorder semantic dementia. Less is known about semantic cognition in the genetic forms of FTD caused by mutations in the genes MAPT, C9orf72, and GRN. We developed a modified version of the Camel and Cactus Test (mCCT) to investigate the presence of semantic difficulties in a large genetic FTD cohort from the Genetic FTD Initiative (GENFI) study. Six-hundred-forty-four participants were tested with the mCCT including 67 MAPT mutation carriers (15 symptomatic, and 52 in the presymptomatic period), 165 GRN mutation carriers (33 symptomatic, 132 presymptomatic), and 164 C9orf72 mutation carriers (56 symptomatic, 108 presymptomatic) and 248 mutation-negative members of FTD families who acted as a control group. The presymptomatic mutation carriers were further split into those early and late in the presymptomatic period (more than vs. within 10 years of expected symptom onset). Groups were compared using a linear regression model, adjusting for age and education, with bootstrapping. Performance on the mCCT had a weak negative correlation with age (rho = -0.20) and a weak positive correlation with education (rho = 0.13), with an overall abnormal score (below the 5th percentile of the control population) being below 27 out of a total of 32. All three of the symptomatic mutation groups scored significantly lower than controls: MAPT mean 22.3 (standard deviation 8.0), GRN 24.4 (7.2), C9orf72 23.6 (6.5) and controls 30.2 (1.6). However, in the presymptomatic groups, only the late MAPT and late C9orf72 mutation groups scored lower than controls (28.8 (2.2) and 28.9 (2.5) respectively). Performance on the mCCT correlated strongly with temporal lobe volume in the symptomatic *MAPT* mutation group (rho > 0.80). In the C9orf72 group, mCCT score correlated with both bilateral temporal lobe volume (rho > 0.31) and bilateral *C9orf72*; frontotemporal dementia; genetics; *MAPT*; progranulin; semantic knowledge

KEYWORDS

CONTACT Jonathan Rohrer 🔯 j.rohrer@ucl.ac.uk 🗈 Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.

List of consortium authors and their respective affiliations are provided after Discussion section.

B Supplemental data for this article can be accessed here.

frontal lobe volume (rho > 0.29), whilst in the *GRN* group mCCT score correlated only with left frontal lobe volume (rho = 0.48). This study provides evidence for presymptomatic impaired semantic knowledge in genetic FTD. The different neuroanatomical associations of the mCCT score may represent distinct cognitive processes causing deficits in different groups: loss of core semantic knowledge associated with temporal lobe atrophy (particularly in the *MAPT* group), and impaired executive control of semantic information associated with frontal lobe atrophy. Further studies will be helpful to address the longitudinal change in mCCT performance and the exact time at which presymptomatic impairment occurs.

The Camel and Cactus Test (CCT) was designed as a way to assess semantic knowledge (Bozeat, Lambon Ralph, Patterson, Garrard, & Hodges, 2000). The task involves asking people to match a picture (or word) with a matching picture (or word) from a choice of four by their semantic association, for example, matching "camel" with "cactus" rather than "tree," "sunflower" or "rose." It was an extension of the Pyramids and Palm Trees Test (Howard & Patterson, 1992) in which people were asked to choose from only two pictures (or words); the CCT, with 64 items in total, was therefore expected to be more sensitive than its predecessor.

The CCT has been tested in a number of cohorts, but particularly in those with semantic dementia (SD, also known as semantic variant primary progressive aphasia), a subtype of frontotemporal dementia (FTD) (Adlam, Patterson, Bozeat, & Hodges, 2010; Bozeat et al., 2000; Garrard & Carroll, 2006; Jefferies & Lambon Ralph, 2006). Loss of semantic knowledge is the fundamental cognitive difficulty in these patients, and the CCT has been shown to sensitively and accurately identify the extent of the deficit. However, semantic impairment is not unique to SD in the FTD spectrum-it is seen in those with behavioral variant FTD (bvFTD) (Hardy et al., 2016), and in those with other forms of primary progressive aphasia (Rohrer, Rossor, & Warren, 2010c), albeit as a secondary cognitive deficit. Amongst these FTD variants, the group in which semantic deficits seem particularly prominent (often appearing in conjunction with, or shortly after behavioral impairment) is genetic FTD due to MAPT mutations (Hardy et al., 2016; Snowden et al., 2015), although this has not been studied in detail.

The Genetic FTD Initiative (GENFI) is an international genetic FTD cohort study aimed at developing novel markers of disease onset and progression (Rohrer et al., 2015). The difficulties of using the CCT in its original form in the GENFI study include firstly, the multiple languages (and cultures) that the study needs to be performed in, and secondly, the length that the test takes to administer, is approximately 20–30 min, is too time-consuming to be included in a battery of tests in which study participants are assessed in multiple cognitive domains as well as undertaking clinical, imaging and biofluid data collection.

We, therefore, developed a modified version of the CCT, usable across the different GENFI languages and short enough to be incorporated into a comprehensive neuropsychological battery. This new version of the CCT was subsequently tested in the GENFI cohort of presymptomatic and symptomatic carriers of mutations in the progranulin (*GRN*), chromosome 9 open reading frame 72 (*C9orf72*), and microtubule-associated protein tau (*MAPT*) genes, as well as a control dataset of non-mutation carriers from the same families.

Methods

Development of the modified Camel and Cactus Test (mCCT)

The development of the test was performed by the first author (KM) in conjunction with the GENFI Investigator Group. In order to ensure the same test was able to be used across multiple languages, the picture-picture matching version of the CCT was chosen, to avoid multiple translations of the words. The first modification that was made was to reduce the size of the test to 32 items: each of the original 64 test items were reviewed for the level of difficulty, confusability (whether any items could have potentially more than one answer that would be readily confused), and cultural appropriateness of individual items (whether participants in each country would recognize the stimuli adequately); we then chose 32 items that were of a spectrum of difficulty (in particular, removing easier items in an attempt to get more control participants off a ceiling score), and felt to be applicable within each of the countries of the GENFI study. The original version of the CCT used a combination of photographs and line drawings, and so the second modification the group decided to make was to develop a more modern photographic version of the test making use of available (labeled for reuse) images from Google Images, each of which was reviewed by the Investigator Group to ensure it was culturally appropriate. The full final version of the mCCT is included as an Supplementary Appendix.

Participants

Participants were recruited from the 4th data freeze of the GENFI study including sites in the UK, Canada, Sweden, Netherlands, Belgium, Spain, Portugal, Italy, and Germany. Of the 680 participants in the data freeze, 644 undertook the mCCT: 248 mutation-negative controls, 67 *MAPT* mutation carriers, 165 *GRN* mutation carriers, and 164 *C9orf72* mutation carriers (Table 1). Mutation carriers were either presymptomatic or symptomatic, with the latter group including the following diagnoses: *MAPT* mutation carriers, all bvFTD; *GRN* mutation carriers, 15 bvFTD, 17 PPA, 1 dementia-not otherwise specified; and *C9orf72* mutation carriers, 2 PPA, 1 progressive supranuclear palsy, 3 dementia-not otherwise specified. We split the presymptomatic mutation

Age in MAPT Age in Number of participants Age in years [mean(SD)] Eact (% male) (% male) etection (mean(SD)] FTLD-CDR [mean(SD)] Controls 248 46.5 (13.0) 4.2 14.2 (3.5) 0.2 (0.6) MAPT Faily 33 34.7 (7.0) 36 14.7 (2.6) 0.2 (0.5) Faily 33 34.7 (7.0) 36 14.0 (3.7) 0.2 (0.5) Presymptomatic 19 500 (9.3) 4.2 14.0 (3.7) 0.3 (0.7) Symptomatic 15 59.7 (6.0) 53 14.9 (3.8) 0.3 (0.5) Symptomatic 15 53 59.7 (6.0) 53 14.0 (3.7) 0.1 (0.2) Symptomatic 53 59.7 (6.0) 53 14.0 (3.7) 0.1 (0.2) Presymptomatic 53 59.7 (6.0) 53 14.0 (3.7) 0.1 (0.2) Symptomatic 53 53.7 (8.9) 53 14.4 (2.4) 0.1 (0.2) Presymptomatic 33 53 14.4 (2.4) 0.2 (0.5) 0.2 (0.5) Symptomatic 53					Yoars of		har lamed bailiboth
Number of participants years ($mean(SD)$) Sex ($\%$ male) ($mean(SD)$) FILD-CDR ($mean(SD)$) Controls 248 46.5 (13.0) 42 14.7 (2.6) 0.2 (0.6) MAPT Enty 33 34.7 (7.0) 36 14.7 (2.6) 0.2 (0.5) MAPT Enty 19 50.0 (9.3) 42 14.0 (3.7) 0.2 (0.5) resymptomatic 19 59.7 (6.0) 53 14.9 (3.7) 0.3 (0.5) presymptomatic 15 53 14.9 (3.7) 0.1 (0.2) Symptomatic 15 53 14.9 (3.7) 0.1 (0.2) RM 79 332 (8.2) 32 14.9 (3.7) 0.1 (0.2) Rehy 79 332 (8.2) 32 14.2 (3.4) 0.1 (0.2) Presymptomatic 33 6.3 (8.4) 52 11.3 (3.3) 83 (5.7) Symptomatic 33 6.3 (8.4) 52 11.4 (2.4) 0.2 (0.5) Presymptomatic 33 6.3 (8.4) 52 11.4 (2.4) 0.2 (0.5)			Age in		education		iniuuilleu calilei aliu Cactus
Controls 248 45.5 (13.0) 42 14.2 (3.5) 0.2 (0.6) MAPT Early 14.7 (2.6) 0.2 (0.5) 0.2 (0.5) MAPT Early 33 34.7 (7.0) 36 14.7 (2.6) 0.2 (0.5) presymptomatic 19 50.0 (9.3) 42 14.0 (3.7) 0.3 (0.7) presymptomatic 15 59.7 (6.0) 53 34.7 (7.0) 35 14.9 (3.8) 0.3 (0.7) presymptomatic 15 59.7 (6.0) 53 14.9 (3.8) 0.3 (0.7) 0.3 (0.7) presymptomatic 15 59.7 (6.0) 53 14.2 (3.4) 0.1 (0.2) faily 7.0 7.0 33 26.4 (7.8) 49 14.2 (3.4) 0.3 (0.7) presymptomatic 33 58.4 (7.8) 32 14.4 (2.4) 0.3 (0.7) presymptomatic 33 63.9 (9.7) 49 14.4 (2.4) 0.3 (0.7) presymptomatic 33 14.4 (2.4) 0.2 (0.5) 0.4 (0.9) 0.4 (0.9) presymptomati		Number of participants	years [mean(SD)]	Sex (% male)	[mean(SD)]	FTLD-CDR [mean(SD)]	Test [mean(SD)]
MAPI MAPI 14.7 (2.6) 0.2 (0.5) Tarky 14.9 (3.7) 0.8 (1.9) 0.2 (0.5) Presymptomatic 19 50.0 (9.3) 42 14.0 (3.7) 0.8 (1.9) Presymptomatic 15 59.7 (6.0) 53 14.9 (3.8) 0.0 (5.8) Symptomatic 15 39.2 (8.2) 33 32.2 (8.2) 32 14.9 (3.8) 0.1 (0.2) Symptomatic 15 33 39.2 (8.2) 32 14.9 (3.8) 0.1 (0.2) RMV 79 39.2 (8.2) 32 14.9 (3.8) 0.1 (0.2) Presymptomatic 53 58.4 (7.8) 49 14.2 (3.4) 0.3 (0.7) Presymptomatic 33 63.9 (8.4) 52 11.3 (3.3) 83 (5.5) Symptomatic 33 68 39.9 (9.7) 49 14.4 (2.4) 0.2 (0.5) Presymptomatic 40 52 11.3 (3.3) 9.4 (0.9) 14.4 (2.4) 0.2 (0.5) Presymptomatic 40 53 14.4 (2.4) 0.2 (0.5)	Controls	248	46.5 (13.0)	42	14.2 (3.5)	0.2 (0.6)	30.2 (1.6)
presymptomatic 1 1 0 1 0 0 1 0 0 1 0 0 1 0 <th0< th=""> 0 <th0< th=""> <</th0<></th0<>	MAPI Early	33	34.7 (7.0)	36	14.7 (2.6)	0.2 (0.5)	30.9 (0.9)
presymptomatic 15 59.7 (6.0) 53 14.9 (3.8) 9.0 (5.8) Symptomatic 15 59.7 (6.0) 53 9.2 (8.2) 9.0 (5.8) GRV Tarly 79 392.2 (8.2) 32 15.0 (3.7) 0.1 (0.2) Early 79 392.2 (8.2) 33 58.4 (7.8) 49 14.2 (3.4) 0.3 (0.7) Presymptomatic 53 53.9 (8.4) 52 11.3 (3.3) 8.3 (5.5) Late 33 63.9 (8.4) 52 11.3 (3.3) 8.3 (5.5) Symptomatic 33 59.9 (9.7) 43 14.4 (2.4) 0.2 (0.5) Presymptomatic 40 53.7 (8.9) 33 14.4 (3.7) 0.4 (0.9) Presymptomatic 66 53.7 (8.9) 53 14.4 (3.7) 0.4 (0.9) Presymptomatic 66 53.7 (8.9) 53 14.4 (3.7) 0.4 (0.9) Presymptomatic 66 53.7 (8.9) 53 14.4 (3.7) 0.4 (0.9) Presymptomatic 66 66 53.7 (8.9) 56 14.4 (3.7) 0.4 (0.9) Presymptomatic	presymptomatic Late	19	50.0 (9.3)	42	14.0 (3.7)	0.8 (1.9)	28.8 (2.2)
Griv 150 (3.7) 0.1 (0.2)Early 79 39.2 (8.2) 32 (8.2) 32 (3.7) 0.1 (0.2)Tersymptomatic 53 584 (7.8) 49 14.2 (3.4) 0.3 (0.7)Late 33 63.9 (8.4) 52 11.3 (3.3) 8.3 (5.5)Symptomatic 33 63.9 (8.4) 52 11.3 (3.3) 8.3 (5.5)Conf72Early 68 39.9 (9.7) 43 14.4 (2.4) 0.2 (0.5)Presymptomatic 40 53.7 (8.9) 33 14.4 (3.7) 0.4 (0.9)Presymptomatic 56 5.77 (8.9) 56 12.0 (20) 0.4 (0.9)	presymptomatic Symptomatic	15	59.7 (6.0)	53	14.9 (3.8)	9.0 (5.8)	22.3 (8.0)
presymptomatic 53 58.4 (7.8) 49 14.2 (3.4) 0.3 (0.7) Late 53 58.4 (7.8) 49 14.2 (3.4) 0.3 (0.7) presymptomatic 33 63.9 (8.4) 52 11.3 (3.3) 8.3 (5.5) Symptomatic 33 39.9 (9.7) 43 14.4 (2.4) 0.2 (0.5) Presymptomatic 40 53.7 (8.9) 33 14.4 (3.7) 0.4 (0.9) Presymptomatic 56 5.3 / 7.8) 56 12.0 (20) 0.4 (0.9)	GAN Early	79	39.2 (8.2)	32	15.0 (3.7)	0.1 (0.2)	30.5 (1.3)
presymptomatic 33 63.9 (8.4) 52 11.3 (3.3) 8.3 (5.5) Symptomatic 33 63.9 (9.7) 43 14.4 (2.4) 0.2 (0.5) C90772 Early 68 39.9 (9.7) 43 14.4 (2.4) 0.2 (0.5) Presymptomatic 40 53.7 (8.9) 33 14.4 (3.7) 0.4 (0.9) Presymptomatic 56 6.7 (7.8) 66 13.0 (2.6)	presymptomatic Late	53	58.4 (7.8)	49	14.2 (3.4)	0.3 (0.7)	29.8 (1.9)
Cyonne Cyonne <td>presymptomatic Symptomatic</td> <td>33</td> <td>63.9 (8.4)</td> <td>52</td> <td>11.3 (3.3)</td> <td>8.3 (5.5)</td> <td>24.4 (7.2)</td>	presymptomatic Symptomatic	33	63.9 (8.4)	52	11.3 (3.3)	8.3 (5.5)	24.4 (7.2)
presymptomatic 40 53.7 (8.9) 33 14.4 (3.7) 0.4 (0.9) Late presymptomatic 54 53.7 (8.9) 33 0.4 (0.9)	Early	68	39.9 (9.7)	43	14.4 (2.4)	0.2 (0.5)	30.4 (1.5)
presymptomatic c 523 (7.8) 56 130 (3.0) 06 (5.8)	presymptomatic Late	40	53.7 (8.9)	33	14.4 (3.7)	0.4 (0.9)	28.9 (2.5)
	presymptomatic Symptomatic	56	62.2 (7.8)	66	13.0 (3.9)	9.6 (5.8)	23.6 (6.5)

APPLIED NEUROPSYCHOLOGY: ADULT 🖕 3

carriers based on their estimated age at onset, a measure calculated by the difference between the current age and the mean age at onset of symptoms within the family (Rohrer et al., 2015): those further than 10 years from estimated onset were called "early" presymptomatic mutation carriers, and those within 10 years of estimated onset were called "late" presymptomatic mutation carriers.

Imaging

The majority of mutation carriers had magnetic resonance imaging (MRI) on a 3T scanner as part of their assessment: 30/33 early presymptomatic, 17/19 late presymptomatic, 12/ 15 symptomatic MAPT mutation carriers; 76/79 early presymptomatic, 48/53 late presymptomatic, 31/33symptomatic GRN mutation carriers; and 66/68 early presymptomatic, 35/40 late presymptomatic, 50/56 symptomatic C9orf72mutation carriers. Volumetric T1 MRI brain scans were parcellated using the geodesic information flow (GIF) algorithm, which is based on atlas propagation and label fusion, with parcellations combined to create volumetric measures of frontal, temporal, parietal and occipital gray matter in both hemispheres (Rohrer et al., 2015).

Statistical analysis

In the control group, we explored the relationship of the mCCT score to age (Spearman rank correlation), sex (Mann–Whitney U test) and education (years in education—Spearman rank correlation).

Scores on the mCCT were compared between groups using a linear regression model in STATA (v.14; College Station, Texas) adjusting for age and education, with 95% bias-corrected bootstrapped CIs with 1000 repetitions.

Spearman rank correlation coefficients were calculated between mCCT scores and imaging measures in STATA.

Results

Healthy controls

Stratifying by decade, mean mCCT score was similar (29.5–30.5) in each age group within the controls (Table 2); however overall there was a weak but significant correlation of mCCT score with age (rho = -0.20, p = 0.001), that is, lower mCCT scores with higher age.

145 participants in the control group were female (58%) and 103 were male (42%). No significant differences in mCCT scores were seen between the groups (p = 0.441), with a mean (standard deviation) mCCT score of 30.2 (1.6) in females and 30.1 (1.6) in males.

Similar to age, when stratifying by education level, mean CCT score was similar (29.8–30.5) in each group within the controls (Table 3); however overall there was also a very weak but significant correlation of mCCT score with years of education (rho = 0.13, p = 0.037), that is, lower mCCT scores with fewer years of education.

Table 2. Modified Camel and Cactus Test scores in controls by age.

Age group (years)	Number of participants	Modified Camel and Cactus Test [mean(SD)]
18.1–29.9	28	30.0 (1.9)
30.0–39.9	58	30.5 (1.6)
40.0-49.9	66	30.5 (1.4)
50.0-59.9	48	30.1 (1.4)
60.0–69.9	40	29.5 (1.7)
70.0–85.0	8	29.5 (1.6)

Table 3.	Modified	Camel and	Cactus	Test	scores ir	n controls	by education.
----------	----------	-----------	--------	------	-----------	------------	---------------

Education group (years)	Number of participants	Modified Camel and Cactus Test [mean(SD)]
0–9	25	29.8 (1.7)
10–12	47	30.1 (1.8)
13–16	122	30.1 (1.6)
<u>≥</u> 17	54	30.5 (1.4)

 Table 4. Modified Camel and Cactus Test score in controls—cumulative frequency.

Modified Camel and Cactus Test score	Number of participants	Cumulative frequency (%)
25	3	1.2
26	5	3.2
27	8	6.5
28	24	16.1
29	27	27.0
30	57	50.0
31	67	77.0
32	57	100.0

Overall, controls scored between 25 and 32 out of a total possible score of 32 (mean score 30.2, standard deviation 1.6), with cumulative frequency shown in Table 4. In standard neuropsychological assessments, a score below the 5th percentile is commonly considered to be abnormal: for the mCCT a score of below 27 would, therefore, be considered outside the normal range. A score of 27 would be considered a borderline abnormal result.

Mutation carriers

All of the three symptomatic mutation carrier groups showed a significantly lower score than controls (Tables 1 and 5, Figure 1), with no significant difference between the different genetic groups: *MAPT* mean 22.3 (standard deviation 8.0), *GRN* 24.4 (7.2), and *C9orf72* 23.6 (6.5). Within each genetic group, scores were significantly lower in the symptomatic group compared with both the early and late presymptomatic groups (Tables 1 and 5, Figure 1).

No significant differences were seen between the early presymptomatic mutation carriers and controls. However a significantly lower score was seen in the late presymptomatic group compared with controls (and in the late compared with the early presymptomatic group) in both the *MAPT* and *C9orf72* genetic groups but not the *GRN* group (Table 5, Figure 1): *MAPT* late presymptomatic 28.8 (2.2), early presymptomatic 30.9 (0.9); *C9orf72* late presymptomatic 28.9 (2.5), early presymptomatic 30.4 (1.5); *GRN* late presymptomatic 29.8 (1.9), early presymptomatic 30.5 (1.3).

Table 5. Adjusted mean d	ifferences in Modifi	fied Camel and Cactus T	est score between group	ps with 95% bias co	rrected confidence i	ntervals.			
	MAPT early presymptomatic	MAPT late presymptomatic	MAPT symptomatic	GRN early presymptomatic	GRN late presymptomatic	GRN symptomatic	<i>C9orf72</i> early presymptomatic	<i>C9orf72</i> late presymptomatic	<i>C9orf72</i> symptomatic
Controls	030 (-018 060)	-1 27 (-2 38 -0 50)	-7 A8 (-11 87 -2 8A)	-0.01 (-0.41 0.35)	0.21 (_052 0.63)	-5 00 (-7 38 -2 72)	-0.04 (-0.52 0.30)	-1 05 (-1 80 -0 35)	-6 03 (-812 -4 40)
WAPT early presymptomatic	(co.o 'ol.o_) oc.o	-1.57 (-2.60, -0.69)	-7.78 (-12.68, -4.10)	-0.30(-0.71, 0.12)	-0.28(-0.91, 0.42)	-5.30(-7.75, -3.21)	-0.34 (-0.81, 0.14)	-1.35 (-2.15, -0.50)	-6.33 (-8.37, -4.71)
MAPT late presymptomatic			-6.21 (-10.27, -2.16)	1.27 (0.29, 2.26)	1.29 (0.34, 2.42)	-3.73 (-6.50, -1.42)	1.23 (0.17, 2.22)	0.22 (-0.90, 1.41)	-4.76 (-6.65, -2.76)
MAPT symptomatic			•	7.48 (3.82, 11.89)	7.51 (4.04, 12.03)	2.48 (-1.81, 7.73)	7.45 (3.83, 11.95)	6.44 (2.84, 10.95)	1.45 (-2.56, 6.29)
GRN early presymptomatic					0.03 (-0.58, 0.75)	-4.99 (-7.66, -2.89)	-0.03 (-0.50, 0.50)	-1.04 (-1.82, -0.33)	-6.03 (-8.24, -4.38)
GRN late presymptomatic						-5.02 (-7.95, -2.77)	-0.06 (-0.70, 0.56)	-1.07 (-1.96, -0.24)	-6.06 (-8.18, -4.39)
GRN symptomatic							4.96 (2.89, 7.57)	3.95 (1.85, 6.67)	-1.03 (-3.83, 2.09)
C9orf72 early presymptomatic								-1.01 (-1.88, -0.16)	-6.00 (-8.20, -4.45)
C9orf72 late presymptomatic									-4.99 (-7.04, -3.12)
C9orf72 symptomatic									

Bold represents a significant difference at p < 0.05

Figure 1. Modified Camel and Cactus Test scores in each group—significant differences from controls and within each genetic group are starred.

Imaging analyses revealed differences between the genetic groups in terms of the anatomical regions that were most significantly correlated with the mCCT score (Table 6). In the symptomatic MAPT group, the score was very strongly associated with bilateral temporal lobe atrophy (rho > 0.80for both temporal lobes), with a borderline association with left temporal lobe atrophy in the late presymptomatic group (rho = 0.48). In the symptomatic C9orf72 group the score was also associated with bilateral temporal lobe atrophy (rho = 0.40 for right, and 0.31 for left), but also with bilateral frontal lobe atrophy (rho = 0.30 for right, and 0.29 for left). In the late presymptomatic C9orf72 group, the only significant correlation was with left frontal lobe volume (rho = 0.33). In the symptomatic GRN group, the mCCT score was significantly correlated with left frontal lobe atrophy (rho = 0.48), but with quite widespread volume loss in the late presymptomatic group. No significant correlations were found with any of the regional volumes in the early presymptomatic groups.

Discussion

In this study, we have shown that a modified version of the Camel and Cactus Test is able to detect deficits within both symptomatic genetic FTD, and for *MAPT* and *C9orf72* mutation carriers, the late presymptomatic period within 10 years of expected onset. Scores on the mCCT were correlated with atrophy in temporal regions for the symptomatic *MAPT* carriers, temporal and frontal areas for *C9orf72* carriers, and frontal gray matter for *GRN* mutation carriers, suggesting different areas of a semantic association network are predominantly affected in the different groups.

By investigating a large control population consisting of mutation-negative members of genetic FTD families, we

early $MAPT$ early GRN early $Cgor72$ presymppresymplate presymplate presymp $MAPT$ symppresymp GRN early $Cgor72$ Right frontal $-0.03 (0.872)$ $0.11 (0.681)$ $0.46 (0.135)$ $0.16 (0.158)$ $0.38 (0.008)$ $0.23 (0.210)$ $0.17 (0.177)$ $0.27 (0.123)$ Right frontal $-0.03 (0.872)$ $0.11 (0.681)$ $0.46 (0.135)$ $0.14 (0.231)$ $0.23 (0.008)$ $0.23 (0.210)$ $0.017 (0.177)$ $0.27 (0.123)$ Right temporal $-0.08 (0.660)$ $0.33 (0.192)$ $0.38 (0.002)$ $0.13 (0.248)$ $0.38 (0.002)$ $0.01 (0.581)$ $0.01 (0.564)$ Right temporal $0.115 (0.547)$ $0.48 (0.007)$ $0.11 (0.573)$ $0.22 (0.193)$ $0.02 (0.604)$ Right temporal $0.116 (0.743)$ $0.11 (0.773)$ $0.21 (0.001)$ $0.00 (0.998)$ $0.22 (0.199)$ Right temporal $0.17 (0.793)$ $0.01 (0.963)$ $0.11 (0.573)$ $0.21 (0.001)$ $0.00 (0.998)$ $0.22 (0.199)$ Right cocipital $-0.07 (0.598)$ $0.07 (0.793)$ $0.01 (0.764)$ $0.18 (0.299)$ $0.15 (0.374)$ Right cocipital $-0.07 (0.296)$ $-0.14 (0.581)$ $0.09 (0.645)$ $0.09 (0.626)$ Right cocipital $-0.07 (0.296)$ $0.12 (0.296)$ $0.12 (0.290)$ $0.16 (0.645)$ $0.09 (0.626)$		MAPT			GRN			C9orf72		
presymppresymplate presymp $MAPT$ symppresymppresymp GRN symppresymplate presympRight frontal -0.03 (0.872) 0.11 (0.681) 0.46 (0.135) 0.16 (0.158) 0.33 (0.008) 0.23 (0.210) -0.17 (0.177) 0.27 (0.123)Left frontal -0.03 (0.660) 0.33 (0.192) 0.33 (0.217) 0.14 (0.231) 0.33 (0.008) 0.48 (0.007) -0.17 (0.177) 0.27 (0.123)Left frontal -0.06 (0.744) 0.05 (0.846) 0.33 (0.202) 0.13 (0.209) 0.20 (0.131) 0.02 (0.137) 0.02 (0.169)Right temporal -0.06 (0.744) 0.05 (0.846) 0.38 (0.002) 0.13 (0.209) 0.11 (0.379) 0.09 (0.504)Left temporal 0.115 (0.547) 0.48 (0.071) 0.11 (0.573) 0.20 (0.183) 0.20 (0.102) -0.22 (0.199)Right parietal 0.11 (0.573) 0.11 (0.577) 0.26 (0.013) 0.11 (0.374) 0.23 (0.102) 0.07 (0.573) 0.25 (0.140)Right cocipital -0.01 (0.968) 0.07 (0.793) 0.06 (0.862) 0.05 (0.642) 0.24 (0.028) 0.07 (0.573) 0.25 (0.140)Left parietal -0.01 (0.568) 0.07 (0.793) 0.06 (0.862) 0.05 (0.642) 0.04 (0.002) 0.11 (0.273) 0.05 (0.709)Right cocipital -0.02 (0.296) -0.14 (0.594) 0.02 (0.564) 0.01 (0.028) 0.01 (0.573) 0.02 (0.190)Left parietal -0.01 (0.296) -0.14 (0.594) 0.12 (0.262) 0.11 (0.264) 0.18 (0.299) <th></th> <th>early</th> <th>MAPT</th> <th></th> <th>early</th> <th>GRN</th> <th></th> <th>early</th> <th>C9orf72</th> <th></th>		early	MAPT		early	GRN		early	C9orf72	
Right frontal -0.03 (0.872) 0.11 (0.681) 0.46 (0.135) 0.16 (0.158) 0.38 (0.008) 0.23 (0.210) -0.17 (0.177) 0.27 (0.123) Left frontal -0.08 (0.660) 0.33 (0.192) 0.38 (0.217) 0.14 (0.231) 0.38 (0.008) 0.48 (0.077) -0.17 (0.177) 0.27 (0.195) 0.33 (0.249) Right temporal -0.06 (0.744) 0.05 (0.846) 0.30 (0.002) 0.13 (0.248) 0.37 (0.009) -0.10 (0.581) -0.13 (0.279) 0.09 (0.604) Left temporal 0.115 (0.547) 0.48 (0.077) 0.32 (0.013) 0.30 (0.102) -0.24 (0.058) 0.22 (0.199) Right temporal 0.11 (0.677) 0.46 (0.135) 0.11 (0.327) 0.20 (0.183) 0.30 (0.102) -0.24 (0.058) 0.25 (0.140) Right parietal 0.11 (0.547) 0.46 (0.135) 0.11 (0.327) 0.21 (0.001) 0.07 (0.573) 0.25 (0.140) Left parietal -0.01 (0.968) 0.36 (0.156) 0.32 (0.028) 0.32 (0.028) 0.27 (0.029) 0.15 (0.374) Left parietal -0.01 (0.568) 0.24 (0.027) 0.24 (0.028) 0.21 (0.264) 0.16 (0.		presymp	late presymp	MAPT symp	presymp	late presymp	GRN symp	presymp	late presymp	<i>C9orf72</i> symp
Left frontal -0.08 (0.660) 0.33 (0.192) 0.38 (0.217) 0.14 (0.231) 0.38 (0.008) 0.48 (0.007) -0.13 (0.296) 0.33 (0.049)Right temporal -0.06 (0.744) 0.05 (0.846) 0.30 (0.002) 0.13 (0.248) 0.37 (0.009) -0.11 (0.571) -0.11 (0.379) 0.09 (0.604)Left temporal 0.115 (0.547) 0.48 (0.057) 0.32 (0.001) 0.11 (0.339) 0.20 (0.183) 0.20 (0.102) -0.24 (0.058) 0.22 (0.199)Right parietal 0.11 (0.577) 0.46 (0.135) 0.11 (0.327) 0.20 (0.183) 0.20 (0.102) -0.24 (0.058) 0.25 (0.140)Right parietal 0.14 (0.549) 0.11 (0.577) 0.46 (0.135) 0.11 (0.327) 0.20 (0.183) 0.07 (0.573) 0.25 (0.140)Left parietal -0.01 (0.668) 0.36 (0.156) 0.11 (0.744) 0.11 (0.3242) 0.32 (0.028) 0.07 (0.573) 0.25 (0.140)Left parietal -0.01 (0.668) 0.07 (0.793) 0.06 (0.862) 0.05 (0.642) 0.44 (0.002) 0.14 (0.264) 0.18 (0.299)Left occipital -0.20 (0.296) -0.14 (0.594) 0.29 (0.356) 0.12 (0.322) 0.36 (0.011) 0.35 (0.054) -0.06 (0.645) 0.09 (0.666)	Right frontal	-0.03 (0.872)	0.11 (0.681)	0.46 (0.135)	0.16 (0.158)	0.38 (0.008)	0.23 (0.210)	-0.17 (0.177)	0.27 (0.123)	0.30 (0.031)
Right temporal $-0.06 (0.744)$ $0.05 (0.846)$ $0.30 (0.002)$ $0.13 (0.248)$ $0.37 (0.009)$ $-0.10 (0.581)$ $-0.11 (0.379)$ $0.09 (0.604)$ Left temporal $0.115 (0.547)$ $0.48 (0.051)$ $0.22 (0.001)$ $0.11 (0.339)$ $0.20 (0.183)$ $0.20 (0.102)$ $-0.24 (0.058)$ $0.22 (0.199)$ Right parietal $0.11 (0.677)$ $0.46 (0.135)$ $0.11 (0.327)$ $0.20 (0.183)$ $0.20 (0.102)$ $-0.24 (0.058)$ $0.22 (0.140)$ Right parietal $-0.01 (0.968)$ $0.11 (0.773)$ $0.46 (0.135)$ $0.11 (0.744)$ $0.11 (0.342)$ $0.22 (0.028)$ $0.27 (0.573)$ $0.25 (0.140)$ Left parietal $-0.01 (0.968)$ $0.07 (0.793)$ $0.06 (0.862)$ $0.01 (0.2642)$ $0.14 (0.002)$ $0.14 (0.264)$ $0.18 (0.299)$ Right occipital $-0.02 (0.296)$ $-0.14 (0.594)$ $0.29 (0.356)$ $0.12 (0.322)$ $0.36 (0.011)$ $0.35 (0.054)$ $-0.06 (0.645)$ $0.09 (0.626)$	Left frontal	-0.08 (0.660)	0.33 (0.192)	0.38 (0.217)	0.14 (0.231)	0.38 (0.008)	0.48 (0.007)	-0.13 (0.296)	0.33 (0.049)	0.29 (0.040)
Left temporal 0.115 (0.547) 0.48 (0.001) 0.11 (0.339) 0.20 (0.183) 0.30 (0.102) -0.24 (0.058) 0.22 (0.199) Right parietal 0.14 (0.454) 0.11 (0.577) 0.46 (0.135) 0.11 (0.327) 0.25 (0.140) 0.25 (0.140) Left parietal -0.01 (0.968) 0.36 (0.156) 0.11 (0.744) 0.11 (0.342) 0.25 (0.121) -0.05 (0.799) 0.15 (0.374) Left parietal -0.07 (0.698) 0.07 (0.793) 0.06 (0.862) 0.05 (0.642) 0.44 (0.023) 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.16 0.18 0.16 0.15 0.15 0.15 0.15 0.16 0.15 0.15 0.16 0.15 0.15 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0	Right temporal	-0.06 (0.744)	0.05 (0.846)	0.80 (0.002)	0.13 (0.248)	0.37 (0.009)	-0.10 (0.581)	-0.11 (0.379)	0.09 (0.604)	0.40 (0.004)
Right parietal 0.14 (0.454) 0.11 (0.677) 0.46 (0.135) 0.11 (0.327) 0.51 (0.001) 0.00 (0.998) 0.07 (0.573) 0.25 (0.140) Left parietal -0.01 (0.968) 0.36 (0.156) 0.11 (0.744) 0.11 (0.342) 0.32 (0.028) 0.07 (0.573) 0.25 (0.709) 0.15 (0.374) Right occipital -0.07 (0.668) 0.07 (0.793) 0.06 (0.862) 0.05 (0.642) 0.44 (0.002) 0.18 (0.121) -0.05 (0.709) 0.15 (0.374) Right occipital -0.07 (0.698) 0.07 (0.793) 0.06 (0.862) 0.05 (0.642) 0.44 (0.002) 0.19 (0.317) 0.14 (0.264) 0.18 (0.299) Left occipital -0.20 (0.296) -0.14 (0.594) 0.29 (0.356) 0.12 (0.322) 0.36 (0.011) 0.35 (0.054) -0.06 (0.645) 0.09 (0.626)	Left temporal	0.115 (0.547)	0.48 (0.051)	0.82 (0.001)	0.11 (0.339)	0.20 (0.183)	0.30 (0.102)	-0.24 (0.058)	0.22 (0.199)	0.31 (0.031)
Left parietal -0.01 (0.968) 0.36 (0.156) 0.11 (0.744) 0.11 (0.342) 0.32 (0.028) 0.28 (0.121) -0.05 (0.709) 0.15 (0.374) Right occipital -0.07 (0.698) 0.07 (0.793) 0.06 (0.862) 0.05 (0.642) 0.44 (0.002) 0.19 (0.317) 0.14 (0.264) 0.18 (0.299) Left occipital -0.20 (0.296) -0.14 (0.594) 0.29 (0.356) 0.12 (0.322) 0.35 (0.011) 0.35 (0.054) 0.06 (0.626)	Right parietal	0.14 (0.454)	0.11 (0.677)	0.46 (0.135)	0.11 (0.327)	0.51 (0.001)	0.00 (0.998)	0.07 (0.573)	0.25 (0.140)	0.20 (0.163)
Right occipital -0.07 (0.698) 0.07 (0.793) 0.06 (0.862) 0.05 (0.642) 0.44 (0.002) 0.19 (0.317) 0.14 (0.264) 0.18 (0.299) Left occipital -0.20 (0.296) -0.14 (0.594) 0.29 (0.356) 0.112 (0.322) 0.36 (0.011) 0.35 (0.054) -0.06 (0.645) 0.09 (0.626)	Left parietal	-0.01 (0.968)	0.36 (0.156)	0.11 (0.744)	0.11 (0.342)	0.32 (0.028)	0.28 (0.121)	-0.05 (0.709)	0.15 (0.374)	0.19 (0.186)
Left occipital -0.20 (0.296) -0.14 (0.594) 0.29 (0.356) 0.12 (0.322) 0.36 (0.011) 0.35 (0.054) -0.06 (0.645) 0.09 (0.626)	Right occipital	-0.07 (0.698)	0.07 (0.793)	0.06 (0.862)	0.05 (0.642)	0.44 (0.002)	0.19 (0.317)	0.14 (0.264)	0.18 (0.299)	0.19 (0.193)
	Left occipital	-0.20 (0.296)	-0.14 (0.594)	0.29 (0.356)	0.12 (0.322)	0.36 (0.011)	0.35 (0.054)	-0.06 (0.645)	0.09 (0.626)	0.04 (0.771)

were able to explore the performance of the CCT in a much larger healthy group than previously. This allows determination of a percentile score and therefore an "abnormal" lower boundary. By making the test freely available, we hope that such healthy control data can be expanded and further validated, particularly in older populations, where there were limited numbers in this study.

Impairment of semantic knowledge has been described previously in people with MAPT mutations (Pickering-Brown et al., 2002, 2008) including very early in the illness: a single case report described a patient with only mild behavioral change who had evidence of semantic impairment on testing at that stage (including scoring only 35 out of 64 on the original visual version of the CCT: Garrard & Carroll, 2005). People with MAPT mutations commonly have focal atrophy of both temporal lobes in a pattern not dissimilar within each hemisphere as that seen in SD, that is, an anterior and inferior predominance of volume loss (Rohrer et al., 2010b; Whitwell et al., 2009). In SD it is felt that semantic impairment is caused by the breakdown of an anatomical network focused on the temporal pole with loss of connectivity to other temporal lobe structures in both hemispheres (Fletcher & Warren, 2011). It is therefore unsurprising that people with MAPT mutations also develop semantic impairment given the pattern of atrophy, and this is supported here by the strong association of performance on the mCCT with reduced bilateral temporal lobe volume. Such loss has been shown to occur presymptomatically (Cash et al., 2018; Rohrer et al., 2015), consistent with the finding in this study of semantic impairment before symptom onset.

Impairment on tasks of semantic knowledge has been investigated less in those with C9orf72 and GRN mutations. Whilst there are some case reports of patients with prominent early semantic deficits in these two groups (Abbate et al., 2014; Cerami et al., 2013; Jiskoot et al., 2018; Rohrer et al., 2010a), in one retrospective neuropsychological study comparing individuals with mutations in all three genes, impaired word comprehension was present at time of initial referral in only 24% of the C9orf72 group and 19% of the GRN group (compared with 86% in the MAPT group), and impaired object knowledge was only found in 16% of the C9orf72 group and 7% of the GRN group (compared with 80% in the MAPT group) (Snowden et al., 2015). One other explanation for poor performance on the mCCT might be the role of executive dysfunction, a common cognitive deficit in genetic FTD (found in 92% of MAPT, 93% of GRN and 84% of C9orf72 patients at initial referral in the same study discussed above: Snowden et al., 2015), and also known to be impaired presymptomatically (Jiskoot et al., 2018; Rohrer et al., 2015). The role of executive function in semantic tasks has been well-described (Jefferies & Lambon Ralph, 2006; Hoffman, Jefferies, & Lambon Ralph, 2010): it has been proposed that semantic cognition relies not just on a temporal lobe-based hub of semantic knowledge, but a second process of executive control required for computation and manipulation of semantic information (Jefferies & Lambon Ralph, 2006; Whitney, Kirk, O'Sullivan, Lambon Ralph, & Jefferies, 2012), located in the ventrolateral prefrontal cortex (Hoffman et al., 2010; Whitney et al., 2012).

This would be consistent in this study with the association of performance on the mCCT with the frontal lobe in both symptomatic GRN and C9orf72 carriers. Interestingly, performance in symptomatic C9orf72 carriers showed an association with both frontal and temporal lobe atrophy, suggesting that both systems may be impaired in this group.

In summary, the mCCT appears to be a useful test of semantic knowledge, able to detect impairment of semantic cognition in both the symptomatic and late presymptomatic periods of genetic FTD. In comparison with the original CCT it is shorter and contains only visual stimuli, making it practical for use in international trials. Future longitudinal studies will be important to investigate the rate of change over time and to understand further the time period before symptom onset when such changes can be detected.

List of GENFI consortium authors

Martin N. Rossor¹, Nick C. Fox¹, Ione O. C. Woollacott¹, Rachelle Shafei¹, Carolin Heller^{1,2}, Rita Guerreiro², Jose Bras², David L. Thomas³, Jennifer Nicholas⁴, Simon Mead⁵, Lieke Meeter⁶, Jessica Panman⁶, Janne Papma⁶, Rick van Minkelen⁷, Yolande Pijnenburg⁸, Begoña Indakoetxea^{9,10}, Alazne Gabilondo¹⁰, Mikel Tainta¹⁰, Maria de Arriba¹⁰, Ana Gorostidi¹⁰, Miren Zulaica¹⁰, Jorge Villanua¹¹, Zigor Diaz¹², Sergi Borrego-Ecija¹³, Jaume Olives¹³, Albert Lladó¹³, Mircea Balasa¹³, Anna Antonell¹³, Nuria Bargallo¹⁴, Enrico Premi¹⁵, Maura Cosseddu¹⁵, Stefano Gazzina¹⁵, Alessandro Padovani¹⁵, Roberto Gasparotti¹⁶, Silvana Archetti¹⁷, Sandra Black¹⁸, Sara Mitchell¹⁸, Ekaterina Rogaeva¹⁹, Morris Freedman²⁰, Ron Keren²¹, David Tang-Wa²², Linn Öijerstedt²³, Christin Andersson²⁴, Vesna Jelic²⁵, Hakan Thonberg²⁶, Andrea Arighi^{27,28}, Chiara Fenoglio^{27,28}, Elio Scarpini^{27,28}, Giorgio Fumagalli^{27,28,29}, Thomas Cope³⁰, Carolyn Timberlake³⁰, Timothy Rittman³⁰, Christen Shoesmith³¹, Robart Bartha^{32,33}, Rosa Rademakers³⁴, Carlo Wilke^{35,36}, Benjamin Bender³⁷, Rose Bruffaerts³⁸, Philip Van Damme³⁹, Mathieu Vandenbulcke^{40,41}, Catarina B. Vandenbulcke^{40,41}, Catarina Ferreira⁴², Gabriel Miltenberger⁴³, Ana Verdelho⁴⁴, Sónia Afonso⁴⁵, Ricardo Taipa⁴⁶, Paola Caroppo⁴⁷, Giuseppe Di Fede⁴⁷, Giorgio Giaccone⁴⁷, Sara Prioni⁴⁷, Veronica Redaelli47, Giacomina Rossi47, Pietro Tiraboschi47, Diana Duro⁴⁸, Maria Rosario Almeida⁴⁸, Miguel Castelo-Branco⁴⁸, Maria João Leitão⁴⁹, Miguel Tabuas-Pereira⁵⁰, Beatriz Santiago⁵⁰, Serge Gauthier⁵¹, Pedro Rosa-Neto⁵², Michele Veldsman⁵³, Toby Flanagan⁵⁴, Catharina Prix⁵⁵, Tobias Hoegen⁵⁵, Elisabeth Wlasich⁵⁵, Sandra Loosli⁵⁵, Sonja Schonecker⁵⁵, Elisa Semler⁵⁶, and Sarah Anderl-Straub⁵⁶

Affiliations

¹Dementia Research Neurodegenerative Disease, Queen Square, London, UK

²Dementia Research Neurodegenerative Disease, Queen Square, London, UK

Repair and Rehabilitation, Queen Square, London, UK

Centre, Department of UCL Institute of Neurology,

Department Institute, of UCL Institute of Neurology,

³Neuroimaging Analysis Centre, Department of Brain UCL Institute of Neurology,

⁴Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK

⁵MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK

⁶Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands

⁷Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands

⁸Amsterdam University Medical Centre, Amsterdam, Netherlands

⁹Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Spain

¹⁰Biodonostia Health Research Institute, San Sebastian, Spain

¹¹OSATEK, University of Donostia, San Sebastian, Spain ¹²San Sebastian, Spain

¹³Alzheimer's disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain

¹⁴Imaging Diagnostic Center, Hospital Clínic, Barcelona, Spain

¹⁵Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy

¹⁶Neuroradiology Unit, University of Brescia, Brescia, Italy

¹⁷Biotechnology Laboratory, Department of Diagnostics, Spedali Civili Hospital, Brescia, Italy

¹⁸Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada

¹⁹Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada

²⁰Baycrest Health Sciences, Rotman Research Institute, University of Toronto, Toronto, Canada

²¹The University Health Network, Toronto Rehabilitation Institute, Toronto, Canada

²²The University Health Network, Krembil Research Institute, Toronto, Canada

²³Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden

²⁴Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

²⁵Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden

²⁶Center for Alzheimer Research, Divison of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden

²⁷Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy

²⁸University of Milan, Milan, Italy

²⁹Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA, University of Florence, Florence, Italy)

³⁰Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK

³¹Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada ³²Department of Medical Biophysics, The University of Western Ontario, London, Canada

³³Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Canada

³⁴Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA

³⁵Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany

³⁶Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany

³⁷Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany

³⁸Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium

³⁹Neurology Service, University Hospitals Leuven, Belgium, Laboratory for Neurobiology, VIB-KU Leuven Centre for Brain Research, Leuven, Belgium

⁴⁰Geriatric Psychiatry Service, University Hospitals Leuven, Belgium

⁴¹Neuropsychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium

⁴²Laboratory of Neurosciences, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal

⁴³Faculty of Medicine, University of Lisbon, Lisbon, Portugal

⁴⁴Department of Neurosciences and Mental Health, Centro Hospitalar Lisboa Norte - Hospital de Santa Maria & Faculty of Medicine, University of Lisbon, Lisbon, Portugal

⁴⁵Instituto Ciencias Nucleares Aplicadas a Saude, Universidade de Coimbra, Coimbra, Portugal

⁴⁶Neuropathology Unit and Department of Neurology, Centro Hospitalar do Porto - Hospital de Santo António, Oporto, Portugal

⁴⁷Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy

⁴⁸Faculty of Medicine, University of Coimbra, Coimbra, Portugal

⁴⁹Centre of Neurosciences and Cell biology, Universidade de Coimbra, Coimbra, Portugal

⁵⁰Neurology Department, Centro Hospitalar e Universitario de Coimbra, Coimbra, Portugal

⁵¹Alzheimer Disease Research Unit, McGill Centre for Studies in Aging, Department of Neurology & Neurosurgery, McGill University, Montreal, Canada

⁵²Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Canada

⁵³Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK

⁵⁴Faculty of Biology, Medicine and Health, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK

⁵⁵Ludwig-Maximilians-Universität München, Munich, Germany ⁵⁶Department of Neurology, University of Ulm, Ulm, Germany

Acknowledgments

The authors acknowledge the support of the National Institute for Health Research (NIHR) Queen Square Dementia Biomedical Research Unit and the University College London Hospitals Biomedical Research Center; the Leonard Wolfson Experimental Neurology Center; the MRC Dementias Platform UK and the UK Dementia Research Institute. The Dementia Research Center is an Alzheimer's Research UK coordinating center and is supported by Alzheimer's Research UK, the Brain Research Trust and the Wolfson Foundation.

Funding

JDR is an MRC Clinician Scientist (MR/M008525/1) and has received funding from the NIHR Rare Diseases Translational Research Collaboration [BRC149/NS/MH], the Bluefield Project and the Association for Frontotemporal Degeneration. JDW receives grant support from the Alzheimer's Society and Alzheimer's Research UK. RSV has received funding from Fundació Marató de TV3 [20143810].

ORCID

Katrina Moore http://orcid.org/0000-0002-4458-8390 Rhian Convery http://orcid.org/0000-0002-9477-1812 Martina Bocchetta http://orcid.org/0000-0003-1814-5024 Mollie Neason http://orcid.org/0000-0001-9419-7171 Caroline Greaves http://orcid.org/0000-0002-6446-1960 Lucy L. Russell http://orcid.org/0000-0001-5023-5893 Mica T. M. Clarke http://orcid.org/0000-0003-0570-4296 Georgia Peakman http://orcid.org/0000-0002-3319-138X Daniela Galimberti http://orcid.org/0000-0002-9284-5953 Jonathan D. Rohrer http://orcid.org/0000-0002-6155-8417

References

- Abbate, C., Arosio, B., Galimberti, D., Nicolini, P., Chiara, L. R., Rossi, P. D., ... Mari, D. (2014). Phenotypic variability associated with the C9ORF72 hexanucleotide repeat expansion: A sporadic case of frontotemporal lobar degeneration with prodromal hyposmia and predominant semantic deficits. *Journal of Alzheimer's Disease*, 40(4), 849–855. doi:10.3233/JAD-132075
- Adlam, A. L., Patterson, K., Bozeat, S., & Hodges, J. R. (2010). The Cambridge Semantic Memory Test Battery: Detection of semantic deficits in semantic dementia and Alzheimer's disease. *Neurocase*, 16(3), 193–207. doi:10.1080/13554790903405693
- Bozeat, S., Lambon Ralph, M. A., Patterson, K., Garrard, P., & Hodges, J. R. (2000). Non-verbal semantic impairment in semantic dementia. *Neuropsychologia*, 38(9), 1207–1215. doi:10.1016/S0028-3932(00)00034-8
- Cash, D. M., Bocchetta, M., Thomas, D. L., Dick, K. M., van Swieten, J. C., Borroni, B., ... Rohrer, J. D, Genetic FTD Initiative, GENFI (2018). Patterns of gray matter atrophy in genetic frontotemporal dementia: Results from the GENFI study. *Neurobiology of Aging*, 62, 191–196. doi:10.1016/j.neurobiolaging.2017.10.008
- Cerami, C., Marcone, A., Galimberti, D., Zamboni, M., Fenoglio, C., Serpente, M., ... Cappa, S. F. (2013). Novel evidence of phenotypical variability in the hexanucleotide repeat expansion in chromosome 9. *Journal of Alzheimer's Disease*, 35(3), 455–462. doi:10.3233/ JAD-122302
- Fletcher, P. D., & Warren, J. D. (2011). Semantic dementia: A specific network-opathy. *Journal of Molecular Neuroscience*, 45(3), 629–636. doi:10.1007/s12031-011-9586-3
- Garrard, P., & Carroll, E. (2005). Presymptomatic semantic impairment in a case of fronto-temporal lobar degeneration associated with the +16 mutation in MAPT. *Neurocase*, *11*(5), 371–383. doi:10.1080/ 13554790500205421

- Garrard, P., & Carroll, E. (2006). Lost in semantic space: A multimodal, non-verbal assessment of feature knowledge in semantic dementia. *Brain*, 129(5), 1152–1163. Maydoi:10.1093/brain/awl069
- Hardy, C. J., Buckley, A. H., Downey, L. E., Lehmann, M., Zimmerer, V. C., Varley, R. A., ... Warren, J. D. (2016). The language profile of behavioral variant frontotemporal dementia. *Journal of Alzheimer's Disease*, 50(2), 359–371. doi:10.3233/JAD-150806
- Hoffman, P., Jefferies, E., & Lambon Ralph, M. A. (2010). Ventrolateral prefrontal cortex plays an executive regulation role in comprehension of abstract words: Convergent neuropsychological and repetitive TMS evidence. *Journal of Neuroscience*, 30(46), 15450–15456. doi:10.1523/JNEUROSCI.3783-10.2010
- Howard, D., & Patterson, K. (1992). The Pyramids and Palm Trees Test. A test of semantic access from words and pictures. Bury St. Edmunds, UK: Thames Valley Company.
- Jefferies, E., & Lambon Ralph, M. A. (2006). Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. *Brain*, 129(8), 2132–2147. doi:10.1093/brain/awl153
- Jiskoot, L. C., Panman, J. L., van Asseldonk, L., Franzen, S., Meeter, L. H. H., Donker Kaat, L., ... Papma, J. M. (2018). Longitudinal cognitive biomarkers predicting symptom onset in presymptomatic frontotemporal dementia. *Journal of Neurology*, 265(6), 1381–1392. doi:10.1007/s00415-018-8850-7
- Pickering-Brown, S. M., Richardson, A. M., Snowden, J. S., McDonagh, A. M., Burns, A., Braude, W., ... Mann, D. M. (2002). Inherited frontotemporal dementia in nine British families associated with intronic mutations in the taugene. *Brain*, 125(4), 732–751. doi:10. 1093/brain/awf069
- Pickering-Brown, S. M., Rollinson, S., Du Plessis, D., Morrison, K. E., Varma, A., Richardson, A. M., ... Mann, D. M. (2008). Frequency and clinical characteristics of progranulin mutation carriers in the Manchester frontotemporal lobar degeneration cohort: Comparison with patients with MAPT and no known mutations. *Brain*, 131(3), 721–731. doi:10.1093/brain/awm331
- Rohrer, J. D., Crutch, S. J., Warrington, E. K., & Warren, J. D. (2010a). Progranulin-associated primary progressive aphasia: A distinct phenotype? *Neuropsychologia*, 48(1), 288–297. doi:10.1016/j.neuropsychologia.2009.09.017
- Rohrer, J. D., Nicholas, J. M., Cash, D. M., van Swieten, J., Dopper, E., Jiskoot, L., ... Binetti, G. (2015). Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: A crosssectional analysis. *The Lancet Neurology*, 14(3), 253–262. doi:10. 1016/S1474-4422(14)70324-2
- Rohrer, J. D., Ridgway, G. R., Modat, M., Ourselin, S., Mead, S., Fox, N. C., ... Warren, J. D. (2010b). Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. *NeuroImage*, 53(3), 1070–1076. doi:10.1016/j.neuroimage. 2009.12.088
- Rohrer, J. D., Rossor, M. N., & Warren, J. D. (2010c). Syndromes of nonfluent primary progressive aphasia: A clinical and neurolinguistic analysis. *Neurology*, 75(7), 603–610. doi:10.1212/WNL.0b013e3181ed9c6b
- Snowden, J. S., Adams, J., Harris, J., Thompson, J. C., Rollinson, S., Richardson, A., ... Pickering-Brown, S. (2015). Distinct clinical and pathological phenotypes in frontotemporal dementia associated with MAPT, PGRN and C9orf72 mutations. *Amyotrophic Lateral Sclerosis* and Frontotemporal Degeneration, 16(7–8), 497–505. doi:10.3109/ 21678421.2015.1074700
- Whitney, C., Kirk, M., O'Sullivan, J., Lambon Ralph, M. A., & Jefferies, E. (2012). Executive semantic processing is underpinned by a large-scale neural network: Revealing the contribution of left prefrontal, posterior temporal, and parietal cortex to controlled retrieval and selection using TMS. *Journal of Cognitive Neuroscience*, 24(1), 133–147. doi:10. 1162/jocn_a_00123
- Whitwell, J. L., Jack, C. R., Jr, Boeve, B. F., Senjem, M. L., Baker, M., Rademakers, R., ... Josephs, K. A. (2009). Voxel-based morphometry patterns of atrophy in FTLD with mutations in MAPT or PGRN. *Neurology*, 72(9), 813–820. doi:10.1212/01.wnl.0000343851.46573.67